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Mixed spin ladders with exotic ground states?
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Abstract. We study the “mixed spin” isotropic ladder system having S = 1 spins on one leg and S = 1/2
spins on the other, with general-type exchange interactions between spins on neighboring rungs. A set of
model Hamiltonians with exact ground states in the form of a certain matrix product wave function is
obtained. We show that sufficiently strong frustration can lead to exotic singlet ground states with infinite
(exponential) degeneracy. We also list a couple of rather simple models with nontrivial ground states,
including a model with only bilinear exchange.

PACS. 75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics – 75.30.Kz Magnetic phase
boundaries (including magnetic transitions, metamagnetism, etc.)

1 Introduction

During the last few years, “mixed” one-dimensional (1d)
quantum spin systems composed of two or more different
kinds of spin have drawn certain interest. Several Bethe-
ansatz solvable models with singlet ground states have
been found [1–7]; experimentally relevant models (see,
e.g., Ref. [8]) of ferrimagnetic quantum chains were stud-
ied [9–11] via various numerical and analytical approaches;
recently, mixed spin chains [12,13] and ladders [14] with
singlet ground states were analyzed both numerically and
by means of the nonlinear sigma model technique, and
other interesting mixed-spin models with rich phase dia-
gram were proposed and investigated [15].

On the other hand, there has been a considerable
progress in studying 1d spin systems by means of the
so-called matrix product (MP) states technique [16–19].
MP states have proved to be a particularly useful tool for
constructing new models with exact ground states: ground
states of the MP type were found for a large family of spin-
1 and spin-3/2 chains [17–21] and spin-1/2 ladders [22,23].
The simplest example of the MP state is the spin-1 valence
bond state (VBS) which is the ground state of the AKLT
model [24] and is widely accepted as a convenient image
of the Haldane-phase state. MP states were also success-
fully used for the variational study of the ground state and
elementary excitations of spin chains [25–27] and ladders
[28,29]. However, the states which can be accessed via the
MP approach have finite, typically rather short, correla-
tion length. Therefore they are usually gapped (except
for the case of ferromagnetic-type situation with sponta-
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neously broken symmetry [11,30] when the system has
long-range order and is gapless due to the Goldstone
modes) and cannot be applied for a description of the
system behavior at any critical point.

In this paper, we study the isotropic mixed-spin system
which may be viewed as a ladder composed of S = 1
and S = 1/2 legs, with general bilinear, biquadratic, and
six-spin interactions between neighboring rungs, as shown
in Figure 1. The model is described by the Hamiltonian

Ĥ =
∑
n ĥn,n+1, where ĥ is chosen in the following form:

ĥ12 =JS(S1S2) + Jτ (τ 1τ 2)

+
1

2
Jr(S1τ 1) +

1

2
J ′r(S2τ 2) + Jd(τ 1S2) + J ′d(S1τ 2)

+KS(S1S2)2 +KSτ (S1S2)(τ 1τ 2)

+Krr(S1τ 1)(S2τ 2) +Kdd(τ 1S2)(S1τ 2)

+Krd(S1τ 1)(S1τ 2) +K ′rd(S2τ 2)(τ 1S2)

+ (S1S2)
[
K1(S1τ 1) +K ′1(S2τ 2)

]
+ (S1S2)

[
K2(τ 1S2) +K ′2(S1τ 2)

]
+ U1(S1S2)2(τ 1τ 2) + U2(S1τ 1)(S1S2)(S2τ 2)

+ U3(τ 1S2)(S1S2)(S1τ 2)−E0 · 1̂ . (1)

Here S and τ denote spin-1 and spin-1/2 operators, re-
spectively, and symmetric ordering of spin-1 operators is
assumed wherever it is necessary.

We construct different singlet MP wave functions in-
terpolating between a few simple VBS states, and use the
technique of “optimal ground states” [21] to find a family
of Hamiltonians for which those wave functions are ex-
act ground states. Among the members of this family, the
following interesting representatives are found:

(i) “AKLT-like” models which differ from the AKLT
model by a few additional terms;
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Fig. 1. Mixed spin ladder with the S = 1/2 upper leg and
S = 1 lower leg as described by the model (1).

(ii) biquadratically coupled chains which do not contain
bilinear exchange interactions between the S = 1 and S =
1/2 legs;

(iii) a model with purely bilinear interactions;

(iv) multicritical models with infinitely degenerate sin-
glet ground states (for finite systems the degeneracy is
exponentially large).

By the construction of our MP ansatz, all the ground
states are dimerized, and since we choose the initial
Hamiltonian to be translationally invariant, they are
spontaneously dimerized. This is in line with the recent
field-theoretical argument [31] that sufficiently strong bi-
quadratic interaction can cause spontaneous dimerization
in S = 1/2 ladder, implying also a similar two-particle
structure of the spectrum (“absence of magnons”). (The
elementary excitation of a spontaneously dimerized sys-
tem is a pair of domain walls in the dimer order).

The paper is organized as follows: Section 2 explains
the principles of constructing the matrix product ansatz
and the procedure of finding the set of exact solutions,
Section 3 contains the most important results describing
representative models as listed above, and Section 4 gives
a brief summary. For convenience, technical details and
general solutions are listed in the Appendices, so that
those readers who are not interested in the details may
go directly to Section 3.

2 The matrix product ansatz and optimal
ground states construction

We construct the MP ansatz for the model (1) from rect-
angular matrices gL and gR as follows:

|Ψ0〉 = Tr(gL
1 g

R
2 g

L
3 g

R
4 · · · g

L
2N−1g

R
2N ) , (2)

where the matrix gL,R
i contains spin states of the ith

rung only, and the total number of rungs is 2N . We
demand that |Ψ0〉 is a global singlet, then according to
the approach proposed in reference [11] this dictates the

following structure of the elementary matrices gL,R:

gL,R =
∑

k,λ= 1
2 ,3/2

∑
q,µ

c(k,λ)〈00|kq, λµ〉T kqL,R|ψλµ〉

= a
1
√

2

(
T

1
2 ,

1
2

L,R | ⇓〉 − T
1
2 ,−

1
2

L,R | ⇑〉
)

+ b
1

2

(
T

3/2,3/2
L,R |3̄〉 − T 3/2,−3/2

L,R |3〉 − T
3/2, 12
L,R |1̄〉+ T

3
2 ,−

1
2

L,R |1〉
)
.

(3)

Here T kqL,R are in general arbitrary matrix representations

of irreducible tensor operators T̂ kq transforming under ro-

tations R̂ according to the Dk representation of the rota-
tion group:

R̂ T̂ kqR̂−1 =
∑
q′

Dkq′q(R̂)T̂ kq
′

,

and |ψλµ〉 are the rung wave functions with total spin

λ and its z-projection µ. The quantities a ≡ c(
1
2 ,

1
2 ) and

b ≡ c(3/2,3/2) are free parameters. We use the compact
notation | ⇑〉, | ⇓〉 for the rung states having λ = 1/2, and
|1〉, |1̄〉, |3〉, |3̄〉 for the states with spin λ = 3/2:

| ⇑〉 =

√
2

3
|+ ↓〉 −

1
√

3
|0 ↑〉, | ⇓〉 =

1
√

3
|0 ↓〉 −

√
2

3
|− ↑〉,

|3〉 = |+ ↑〉, |3̄〉 = |− ↓〉, (4)

|1〉 =

√
2

3
|0 ↑〉+

1
√

3
|+ ↓〉, |1̄〉 =

√
2

3
|0 ↓〉+

1
√

3
|− ↑〉 ;

here single arrows | ↑〉, | ↓〉 indicate the spin-1/2 states,
and |+〉, |0〉, |−〉 denote spin-1 states.

The matrix elements of any irreducible tensor opera-

tor (for definiteness, let us choose T̂ kqL ) in a fixed basis,
according to the Wigner-Eckart theorem, are given by

T kqL (M ′,M) ≡ 〈JM |T̂ kqL |J
′M ′〉

= T̃ kJ,J′ 〈JM |kq, J
′M ′〉 , (5)

where the reduced matrix element T̃ kJ,J′ does not depend

onM ,M ′, q and thus can be absorbed into the free param-
eters c(kλ) in (3). We need k to be half-integer, therefore
necessarily J 6= J ′ and one arrives at a (2J+1)×(2J ′+1)

non-square matrix. Further, we fix the choice of T̂ kqR defin-
ing it as

(T̂ kqL )† = (−)k−q T̂ k,−qR . (6)

For our problem one can choose, e.g., J = 1 and J ′ =
1/2, then we have 3 × 2 and 2 × 3 matrices for TL and
TR, respectively, so that the dimension of matrix space
coincides with the total number of states of one rung.

More complicated basis for T kqL can be chosen, e.g.,
one may “decompose” J = 1 into two J1 = J2 = 1/2 and
define

T kq,J12

L (M ′,M1M2) ≡ 〈J1M1J2M2|T
kq
L |J12JM〉

= T̃ kJ,J1,J2,J12
〈J12JM |kq, J1M1, J2M2〉 , (7)
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Fig. 2. A couple of VBS states which can be obtained as
limiting cases of the 2 × 4 and 2 × 3 MP ansätze (3). Dotted
box corresponds to the matrix product gLgR.

where J12 denotes the eigenvalues of the operator (J1 +
J2)2. Then, combining M1 and M2 into one “composite”

index, one gets 4×2 matrices for T kqL and 2×4 respectively

for T kqR . Another difference with the previous case is that
now for k = 1/2 there are two possibilities: J12 = 1 or 0,
and the set of matrices T 1/2q acquires an additional free
parameter w:

T
1
2 q

L,R = T
1
2 q,1

L,R + wT
1
2 q,0

L,R .

For the sake of brevity, we will further refer to those
two constructions as “2 × 3” and “2 × 4” MP ansätze;
the explicit form of the matrices we used can be found in
the Appendix 4 (see Eqs. (A.1, A.2)). One may think of
the above construction as of interpolating between several
VBS states shown in Figure 2. It is easy to check, for
example, that the 2 × 4 ansatz at (b/a =

√
2, w = 0)

and 2 × 3 ansatz at b/a =
√

2 correspond to the same
state with completely dimerized legs shown in Figure 2a,
another choice of parameters (a/b = −2

√
2, w = ±

√
3)

leads to the state with S = 1/2 leg dimerized and S = 1
leg in the AKLT-type VBS state (Fig. 2b), and, finally,
the combinations (w = ±1/

√
3, b = 0) and (b = 0, a→ 0,

w ∝ 1/a) give two “U-shape” dimerized states shown in
Figures 2c, 2d respectively.

Our procedure of constructing the exact ground states
follows the ideas presented in references [17,19,21]: we
require the MP wave function (2) to be a zero-energy

groundstate of the local Hamiltonian ĥi,i+1, which ensures

that it is a ground state of the global Hamiltonian Ĥ (an
optimal ground state, in the terminology of Ref. [21]). This
yields the following conditions:

(i) ĥi,i+1 annihilates all states being matrix elements
of the two products gL

i g
R
i+1 and gR

i g
L
i+1:

ĥ12(gL
1 g

R
2 ) = 0 , ĥ12(gR

1 g
L
2 ) = 0 ; (8)

(ii) all other eigenstates of ĥ12 have the energy ε ≥ 0.

Then |Ψ0〉 is the zero-energy ground state of Ĥ; if one

drops the constant term −E0 · 1̂ in (1), the remaining
Hamiltonian has the energy density E0 per rung.

For further treatment it is convenient to write the
Hamiltonian ĥ in terms of projectors on the states |Ψ (k)

JM〉
of the two-rung plaquette (i, i + 1) with fixed angular
momentum. The complete set of the plaquette states
(see Eqs. (A.3)) contains one multiplet with J = 3,
three quintuplets, four triplets and two singlets, and thus
one obtains:

ĥ =
∑

k,l=1,2

λ
(k,l)
0 |Ψ (k)

00 〉〈Ψ
(l)
00 |+

∑
k,l=1..4

λ
(k,l)
1

∑
M

|Ψ (k)
1M 〉〈Ψ

(l)
1M |

+
∑

k,l=1..3

λ
(k,l)
2

∑
M

|Ψ (k)
2M 〉〈Ψ

(l)
2M |+ λ3

∑
M

|Ψ3M 〉〈Ψ3M | . (9)

Here obviously λ
(k,l)
J = (λ

(l,k)
J )∗ because of the Hermi-

tian property of ĥ. The complete set of the plaquette
states can be divided into two subsets: local ground states

|Ψg,(k)
JM 〉, k = 1, . . . n

(g)
J which are contained in the matrix

products gLgR and gRgL, and local eigenstates |Ψ e,(k)
JM 〉,

k = 1, . . . n
(e)
J which do not enter there.

The conditions (i) mean that the local Hamiltonian

ĥ should project only onto the states |Ψ e,(k)
JM 〉, and the

multiplets |Ψg,(k)
JM 〉 have to be absent in equation (9). This

results in the following system of equations:

λ
(g,(k);g,(l))
J = 0, k = 1 . . . n

(g)
J , l = k . . . n

(g)
J ,

λ
(e,(k′);g,(k))
J = 0, k = 1 . . . n

(g)
J , k′ = 1 . . . n

(e)
J , (10)

which is essentially a system of linear equations in the
Hamiltonian coupling constants J.., K.., U.. (see Eq. (1)).

The conditions (ii) require that all the eigenstates

within the subspace determined by the basis |Ψ e,(k)
JM 〉 have

positive energy, which yields the inequalities

λ̃
(α)
J ≥ 0 , α = 1 . . . n

(e)
J , (11)

where λ̃
(α)
J denotes the eigenvalues of the matrix

λ
(1,1)
J · · · λ

(1,n
(e)
J )

J
...

. . .
...

λ
(n

(e)
J ,1)

J · · · λ
(n

(e)
J ,n

(e)
J )

J

 .
If one or more of λ̃

(α)
J is zero, this may indicate an addi-

tional degeneracy of the ground state.
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Equations (3, 5–8, 10, 11) will be the basis for the
further analysis. Now we proceed to considering specific
solutions of those equations in various particular cases.

3 Models with exact ground states

In this section we present a number of models with exact
ground states being the most simple representatives of dif-
ferent classes of solutions mentioned in the Introduction.

3.1 2× 3 MP ansatz

3.1.1 General case

It is easy to verify that for the 2 × 3 MP ansatz the two
matrix products gLgR and gRgL contain generally only
the following multiplets (non-normalized):

a2ψ11
00 + (b2/

√
2)ψ33

00 ≡ |Ψ
(2)
00 〉 ,

ψ11
1M ≡ |Ψ

(2)
1M 〉 , ψ33

1M ≡ |Ψ
(3)
1M 〉 ,

(1/
√

2)(ψ31
1M + ψ13

1M ) ≡ |Ψ (2)
1M 〉 ,

b2ψ33
2M +

√
2ab(ψ31

2M − ψ
13
2M ) ≡ |Ψ (3)

2M 〉 , (12)

then the remaining multiplets can be chosen as

|Ψ (1)
00 〉 = (b2/

√
2)ψ11

00 − a
2ψ33

00 ,

|Ψ (1)
1M 〉 =

1
√

2
(ψ31

1M − ψ
13
1M ), |Ψ (1)

2M〉 =
1
√

2
(ψ31

2M + ψ13
2M ) ,

|Ψ (2)
2M 〉 = 2abψ33

2M − (b2/
√

2)(ψ31
2M − ψ

13
2M ) . (13)

The conditions (10, 11) now take the form

λ
(2,2)
0 = λ

(1,2)
0 = λ

(2,1)
0 = 0 ,

λ
(1,k)
1 = λ

(k,l)
1 = 0, 2 ≤ k ≤ 4, k ≤ l ≤ 4 ,

λ
(1,3)
2 = λ

(2,3)
2 = λ

(3,3)
2 = 0,

λ
(1,1)
0 ≥ 0, λ

(1,1)
1 ≥ 0, λ3 ≥ 0, λ̃α2 ≥ 0 , (14)

where λ̃α2 , α = 1, 2 are the eigenvalues of the matrix[
λ

(1,1)
2 λ

(1,2)
2

λ
(2,1)
2 λ

(2,2)
2

]
.

For the sake of simplicity we now set λ
(1,2)
2 = 0. In fact, one

can show that this requirement just fixes certain “natural”
symmetries in (1), namely,

Jr = J ′r, Jd = J ′d, Krd = K ′rd, K1,2 = K ′1,2 . (15)

Further, we require the six-spin couplings in (1) to be zero,
in order to make the model less cumbersome. Then one
obtains the sytem of nineteen equations (fifteen equations

(14) and four additional assumptions λ
(1,2)
2 = 0, U1,2,3 =

0) for twenty parameters of the Hamiltonian (1) and the

free parameter u = a/b entering the 2 × 3 MP ansatz
(3, 5). It turns out that one of those nineteen equations
is linearly dependent, and the general solution contains,
beside u, two additional free parameters x and y. This
solution in its general form is presented in Appendix B
(see Eqs. (B.1), (B.2)), and here we will just consider its
most interesting particular cases:

(a) Setting u = −(1/4)
√

2, x = (32/27)y and fixing the
energy scale by choosing y = 1/3, one gets the “AKLT-
type” model of the form

Ĥ =
∑
n

SnSn+1 +
1

3
(SnSn+1)2

+
1

3
Sn(2τn + τn−1 + τn+1)

+
1

3
(SnSn+1)

[
(Sn + Sn+1) · (τn + τn+1)

]
,(16)

with the energy density per rung E0 = −2/3. (We recall
that symmetric ordering of spin-1 operators is implicitly
assumed.) For this model two more eigenvalues of the local
Hamiltonian are zero:

λ0 = λ1 = 0 ,

which may in principle indicate higher degeneracy of the
ground state (there always exists another dimerized sin-
glet state which can be obtained by the translation in one
rung, and λ1 = 0 may mean degeneracy with some “par-
tially ferromagnetic” state with the total spin J = 1 of
each plaquette).

(b) Setting u = −1/
√

2, y = 0, and choosing x = 4/9
to fix the scale, one obtains a model of S = 1 and S = 1/2
chains coupled with purely biquadratic interaction:

Ĥ =
∑
n

SnSn+1 +
8

3
τnτn+1

+ (SnSn+1)
[
τnτn+1+(Sn+Sn+1) · (τn+τn+1)

]
,

(17)

with the energy per rung E0 = −2. For this model also
one of the local Hamiltonian eigenvalues vanishes,

λ
(1,1)
2 = 0 .

Another model of this type can be obtained by setting
u = −(1/4)

√
2, y = 0; after choosing x = 8/27 to fix a

proper scale the Hamiltonian takes the form

Ĥ =
∑
n

SnSn+1 + 2τnτn+1 + (SnSn+1)
2

+
1

4
(SnSn+1)

[
(Sn + Sn+1) · (τn + τn+1)

]
−
[
(Sn + Sn+1) · τn

][
(Sn + Sn+1) · τn+1

]
. (18)

The energy per rung is E0 = −1, and the eigenvalue
λ0 = 0.
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(c) If x = 0, then one can somewhat surprisingly ob-
serve that the solution (B.1) does not depend on the pa-
rameter u = a/b entering the MP wavefunction (3). Three
of the local Hamiltonian eigenvalues are now zero,

λ0 = 0, λ
(1,1)
2 = 0, λ3 = 0 ,

and one has to put y < 0 for the remaining ones to be
positive. Setting the energy scale by fixing y = −1/8, one
obtains the model

Ĥ =
∑
n

τnτn+1 +
1

8
SnSn+1

−
1

8
Sn(2τn + τn−1 + τn+1) +

1

2
(SnSn+1)(τnτn+1)

−
1

2

[
(Sn + Sn+1) · τn

][
(Sn + Sn+1) · τn+1

]
, (19)

with the energy density E0 = −1/4 per rung. The fact that
λ3 = 0 means that the singlet ground state of the model
is degenerate with the fully polarized ferromagnetic state:
the ferromagnetic state is the eigenstate of the Hamilto-
nian, and it is a straightforward exercise to check that it
has the same energy. However, the ground state degener-
acy of the model (19) is much higher: any wave function
|Ψ(u)〉 of the form (2, 3) with arbitrary parameter u is the
ground state. One can easily calculate the overlap between
two such wave functions having different values of u:

〈Ψ(u1)|Ψ(u2)〉 = qN , q =
(1 + u1u2)2

(1 + u2
1)(1 + u2

2)
≤ 1 , (20)

i.e., the two g.s. wave functions with different values of
u are asymptotically orthogonal in thermodynamic limit
N → ∞ with the overlap vanishing exponentially with
the increase of N . This means that the dimension of the
basis of this subspace {|Ψ(u)〉}, i.e., the number of mu-
tually orthogonal ground states, is exponentially large in
thermodynamic limit. This is an example of multicritical
model. Unfortunately, within the present approach one
cannot make any statement about presence of the gap. It
is worthwhile to mention that infinitely degenerate ground
state in a mixed spin-1/spin-1/2 system was observed in
certain limiting case of de Vega-Woynarovich model (see
the discussion of c̄ = 0 case in Ref. [3]) when the veloc-
ity of one of the two spinon branches with linear disper-
sion becomes zero; however, since a pair of spinons can be
combined either in a singlet or in a triplet with the same
energy, the set of degenerate ground states in that case
should contain not only singlets, but states of higher spin
as well.

3.1.2 Case b = 0 (no spin-3/2 states on the rung)

For 2×3 MP ansatz it is useful to consider separately the
case b = 0, because it turns out to lead to a new type of
solution. One can see that at b = 0 the spin-3/2 states of
the ladder rungs are excluded from the wavefunction (3),

and only the following two multiplets are present in the
matrix products gL

1 g
R
2 , gR

1 g
L
2 :

|Ψg
00〉 = |ψ11

00〉 , |Ψg
1M 〉 = |ψ11

1M 〉 . (21)

It turns out that in this case it is possible to obtain a
nontrivial solution of the system (10) with only bilinear
coupling, which correspond to the following model:

Ĥ =
∑
n

γSnτn − τnτn+1 − SnSn+1

− Sn(τn−1 + τn+1) . (22)

Here γ ≥ 4/3 is an arbitrary parameter, and the energy
density is E0 = −(γ+1/4) per rung. At γ = 4/3 the eigen-
value λ3 vanishes, indicating the first-order transition into
fully polarized ferromagnetic state (cf. a similar transition
for S = 1/2 ladder in Ref. [23]). The matrix product gL

1 g
R
2

has the simple form[
2| ⇑⇓〉 − | ⇓⇑〉 | ⇓⇓〉
−| ⇑⇑〉 −2| ⇓⇑〉+ | ⇑⇓〉

]
, (23)

which allows one to “visualize” the structure of the ground
state as interpolating between two “U-shape” VBS states
shown in Figure 2c, d (here ⇑, ⇓ are the rung states with
total spin 1/2, see Eqs. (4)).

3.2 2× 4 MP ansatz

For the 2 × 4 MP ansatz, at a general choice of parame-
ters a, b, w entering the wave function (3), the following
multiplets are contained in the two matrix products gLgR

and gRgL:

ψ11
00, ψ33

00 ,

ψ11
1M , ψ33

1M , ψ
13
1M , ψ31

1M ,

(1/
√

2)(ψ31
2M − ψ

13
2M ), ψ33

2M . (24)

We require them to be annihilated by the local Hamilto-

nian ĥ, and the remaining multiplets

(1/
√

2)(ψ31
2M − ψ

13
2M), ψ33

3M (25)

to be the eigenstates of ĥ with positive energy. Equations
(10) give a system of eighteen linear equations for twenty
parameters of the Hamiltonian (1), and its general solu-
tion contains two free parameters x, y (one of them is
again irrelevant since it just sets the energy scale). The
multiplets (24) do not contain the wave function param-
eters a, b, w, and thus the solution also does not depend
on them, yielding a one-parametric family of multicriti-
cal models with infinitely degenerate ground state similar
to one discussed in the previous subsection. The solution
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is given by

Jr = J ′r = 2x, Jd = J ′d = K1 = K ′1 = K2 = K ′2 = x ,

JS =
3

2
y, Jτ =

4

7
(5y − 4x) ,

KS =
1

2
y, KSτ =

2

7
(13y − 9x) ,

Krr = Kdd = 3x− 2y, Krd = K ′rd =
4

7
(3x− 2y) ,

U1 =
2

7
(5y − 4x), U2 = U3 =

4

7
(3x− 2y) , (26)

and the conditions (11) take the form

λ2 = 8(y − x) ≥ 0, λ3 =
20

7
(2x+ y) ≥ 0 . (27)

This class of solutions is more cumbersome than in case of
the 2×3 MP ansatz; for instance, one may observe that six-
spin interactions U1,2,3 in (26) should be always nonzero.
The simplest model within this class is achieved by setting
y = 3x/2, its Hamiltonian after fixing the proper energy
scale is

Ĥ =
∑
n

SnSn+1 +
1

3
(SnSn+1)2 [1 +

4

3
τnτn+1

]
+

8

9
τnτn+1 +

4

9
Sn
(
2τn + τn−1 + τn+1

)
+

4

9
(SnSn+1)

[
(Sn + Sn+1) · (τn + τn+1)

]
,(28)

with the energy per rung E0 = −2/3. It should be re-
marked that, in contrast to the model (19), fully polar-
ized ferromagnetic state generally (except for the case
x = − 1

2y) is not degenerate with the ground state of mul-
ticritical models defined by (26).

4 Summary

We have studied the isotropic ladder composed of S = 1
and S = 1/2 chains, with general type exchange interac-
tion between spins on neighboring rungs. The technique
of matrix product states is applied to construct a fam-
ily of Hamiltonians with exact ground states. Among the
members of this family, we have found a couple of rel-
atively simple models with nontrivial ground states, in-
cluding one model with only bilinear exchange and two
models with S = 1 and S = 1/2 chains being coupled
by purely biquadratic exchange. We also present a family
of multicritical models whose ground state is infinitely de-
generate: in the thermodynamic limit N →∞ the number
of degenerate ground states grows with N exponentially.

We are grateful to H.-U. Everts and C. Waldtmann for dis-
cussion of the results. A.K. gratefully acknowledges the hos-
pitality of Hannover Institute for Theoretical Physics during
his stay there. This work was supported by the German Min-
istry for Research and Technology (BMBF) under the contract
03MI4HAN8 and by the Ukrainian Ministry of Science (grant
2.4/27).

Appendix A: Technical details

Here is the explicit form of the matrices we used in (3) for
the 2× 3 MP ansatz:

T
1
2 ,

1
2

L =

0
√

1
3 0

0 0
√

2
3

 , T 1
2 ,−

1
2

L =

−√2
3 0 0

0 −
√

1
3 0

 ,
T

3
2 ,

3
2

L =

[
0 0 1
0 0 0

]
, T

3
2 ,−

3
2

L =

[
0 0 0
1 0 0

]
, (A.1)

T
3
2 ,

1
2

L =

0 −
√

2
3 0

0 0
√

1
3

 , T 3
2 ,−

1
2

L =

√1
3 0 0

0 −
√

2
3 0

 .
The matrices TR can be easily obtained from those matri-
ces using the definition (6).

And in case of the 2 × 4 ansatz the matrices were
chosen as

T
1
2 ,

1
2 ,0

L =

[
0 1/
√

2 −1/
√

2 0
0 0 0 0

]
,

T
1
2 ,−

1
2 ,0

L =

[
0 0 0 0
0 1/
√

2 −1/
√

2 0

]
,

T
1
2 ,

1
2 ,1

L =

[
0 1/
√

6 1/
√

6 0

0 0 0
√

2/3

]
,

T
1
2 ,−

1
2 ,1

L =

[
−
√

2/3 0 0 0
0 −1/

√
6 −1/

√
6 0

]
,

T
3
2 ,

3
2

L =

[
0 0 0 1
0 0 0 0

]
, T

3
2 ,−

3
2

L =

[
0 0 0 0
1 0 0 0

]
,

T
3
2 ,

1
2

L =

[
0 −1/

√
3 −1/

√
3 0

0 0 0 1/
√

3

]
,

T
3
2 ,

1
2

L =

[
1/
√

3 0 0 0
0 −1/

√
3 −1/

√
3 0

]
. (A.2)

The complete set of spin states of a two-rung plaquette
is, in the notation used in equations (4),

ψ33
33 = |33〉, ψ33

3,−3 = |3̄3̄〉,

ψ33
32 =

1
√

2
(|31〉+ |13〉), ψ33

3,−2 =
1
√

2
(|3̄1̄〉+ |1̄3̄〉),

ψ33
3,1 = (1/

√
5)(
√

3|11〉+ |31̄〉+ |1̄3〉),

ψ33
3,−1 = (1/

√
5)(
√

3|1̄1̄〉+ |3̄1〉+ |13̄〉),

ψ33
30 = (1/2

√
5){|33̄〉+ |3̄3〉+ 3(|11̄〉+ |1̄1〉)},

ψ33
22 =

1
√

2
(|31〉 − |13〉), ψ33

2,−2 = −
1
√

2
(|3̄1̄〉 − |1̄3̄〉),

ψ33
21 =

1
√

2
(|31̄〉 − |1̄3〉), ψ33

2,−1 = −
1
√

2
(|3̄1〉 − |13̄〉),
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ψ33
20 = (1/2)(|11̄〉 − |1̄1〉+ |33̄〉 − |3̄3〉),

ψ33
11 =

√
3/10(|31̄〉+ |1̄3〉 − (2/

√
3)|11〉),

ψ33
1,−1 =

√
3/10(|3̄1〉+ |13̄〉 − (2/

√
3)|1̄1̄〉),

ψ33
10 = (1/2

√
5){3(|33̄〉+ |3̄3〉)− |11̄〉 − |1̄1〉},

ψ33
00 = (1/2)(|1̄1〉 − |11̄〉+ |33̄〉 − |3̄3〉),

ψ31
22 = |3 ⇑〉, ψ31

2,−2 = |3̄ ⇓〉,

ψ31
21 =

1

2
|3 ⇓〉+

√
3

2
|1 ⇑〉, ψ31

2,−1 =
1

2
|3̄ ⇑〉+

√
3

2
|1̄ ⇓〉,

ψ31
20 =

1
√

2
(|1 ⇓〉+ |1̄ ⇑〉), ψ31

11 = −
1

2
|1 ⇑〉+

√
3

2
|3 ⇓〉,

ψ31
1,−1 =

1

2
|1̄ ⇓〉 −

√
3

2
|3̄ ⇑〉, ψ31

10 =
1
√

2
(|1 ⇓〉 − |1̄ ⇑〉),

ψ11
00 =

1
√

2

(
| ⇑⇓〉 − | ⇓⇑〉

)
, ψ11

10 =
1
√

2

(
| ⇑⇓〉+ | ⇓⇑〉

)
,

ψ11
11 = | ⇑⇑〉, ψ11

1,−1 = | ⇓⇓〉 . (A.3)

Here the superscripts of ψ’s denote the total momentum
J of left and right rung states of which they are composed
(with the shorthand convention that 3 means J = 3/2 and
1 means 1/2). The states ψ13

jm can be obtained from ψ31
jm

by interchanging the left and right rung states.

Appendix B: General solution for the 2 × 3
MP ansatz

The general solution of the system (14) with four addi-

tional conditions λ
(1,2)
2 = 0, U1,2,3 = 0 has the following

form:

JS =
[
15u4 + 37u2 +

5

2
−
√

2u(2u4 − 40u2 − 3)
]
x− y ,

Jτ =(112u4 + 176u3
√

2 + 192u2 + 44
√

2u+ 14)x− 8y ,

Jr = 2
√

2(4u+
√

2)(u2 + 1)(2u2 − 1)x+ 2y ,

Jd = y ,

KS =−
1

2

√
2(2u+

√
2)(u+

√
2)u(−2u+

√
2)2x ,

KSτ = 4
[
13u4 + 25u2 + 3/2

−
√

2u(2u4 − 24u2 − 5)
]
x− 4y ,

Krr =−
√

2(−4u4 + 11u3
√

2 + 21u2 + 7
√

2u+ 5)

× (2u+
√

2)x+ 4y ,

Kdd =−
√

2(4u4 + 9u3
√

2 + 27u2 + 5
√

2u+ 3)

× (2u+
√

2)x+ 4y ,

Krd =− 4(5u2 +
√

2u+ 1)(u+
√

2)

× (2u+
√

2)x+ 4y ,

K1 =− (−2u+
√

2)(u+
√

2)(u2 + 3
√

2u+ 1)x ,

K2 =
1

2

√
2(−2u+

√
2)(8u3 + 5u2

√
2 + 2u−

√
2)ux ,

E0 =−
[
44u4 + 68u2 + 9/2

+
√

2u(8u4 + 60u2 + 13)
]
x+ 2y ; (B.1a)

with the conditions on the eigenvalues (11) being

λ0 = −6
√

2(4u+
√

2)x ≥ 0 ,

λ1 = (48u4+66u3
√

2 + 78u2+18
√

2u+ 6)x− 4y ≥ 0 ,

λ
(1,1)
2 = 3

√
2(2u+

√
2)(u2 + 1)x ≥ 0 ,

λ2,2
2 = 12(12u3 + 9u2

√
2 + 4u+

√
2)

×(u+
√

2)x− 12y ≥ 0 ,

λ3 = 60u2(u+
√

2)2x ≥ 0 . (B.1b)

Here u = a/b is the free parameter entering the 2× 3 MP
ansatz (3), and x, y are additional free parameters aris-
ing from the solution of the linear system (14). Taking
into account that one of the parameters just sets the en-
ergy scale and thus is irrelevant, one gets from (B.1) a
two-parameter family of Hamiltonians with exact ground
states in a form of the 2× 3 matrix product. One can see
that inequalities (B.1b) can be satisfied provided that

x ≥ 0 , −

√
2

4
≤ u ≤ −

√
2

2
· (B.2)
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